Amazing Hobby Master

contact details

Tupolev 1:144 TU-144 'Charger'

Quick Overview

Tupolev 1:144 TU-144 'Charger'

Share with your friends:

Tupolev 1:144 TU-144 'Charger'

Click on above image to view full picture

More Views




The Soviet government published the concept of the Tu-144 in an article in the January 1962 issue of the magazine Technology of Air Transport. The air ministry started development of the Tu-144 on 26 July 1963, 10 days after the design was approved by the Council of Ministers. The plan called for five flying prototypes to be built in four years, with the first aircraft to be ready in 1966.

Despite the close similarity in appearance of the Tu-144 to the Anglo-French supersonic aircraft, there were significant differences in the control, navigation and engine systems. The Tu-144 lagged behind Concorde in areas such as braking and engine control. Concorde utilized an electronic engine control package from Lucas, which Tupolev was not permitted to purchase for the Tu-144 as it could also be used on military aircraft. Concorde's designers used airliner fuel as coolant for the cabin air conditioning and for the hydraulic system (see Concorde for details). Tupolev installed additional equipment on the Tu-144 to accomplish this, increasing the weight of the airliner.

Andrei N. Tupolev continued to improve the Tu-144 with upgrades and changes on the Tu-144 prototype. While both Concorde and the Tu-144 prototype had ogival delta wings, the Tu-144's wing lacked Concorde's conical camber. Production Tu-144s replaced this wing with a double delta wing including such conical camber, and they added a simple but practical device: two small retractable canard surfaces, one on either side of the forward section on the aircraft, to increase lift at low speeds.

Moving the elevons downward in a delta-wing aircraft increases the lift (force), but also pitches its nose downward. The canards cancel out this nose-downwards moment, thus reducing the landing speed of the production Tu-144s to 315–333 km/h (196–207 mph; 170–180 kn), still faster than that of Concorde. The NASA study lists final approach speeds during Tu-144LL test flights as 315–335 km/h (196–208 mph; 170–181 kn), however these were approach speeds exercised during test flights specifically intended to study landing effects at maximum possible range of speeds, regardless of how hard and stable the landing can be. As to regular landings, FAA circular lists Tu-144S approach speed as 329 km/h (204 mph; 178 kn), as opposed to Concorde's approach speed of 300 km/h (190 mph; 160 kn), based on the characteristics declared by the manufacturers to Western regulatory bodies. It is open to argument how stable the Tu-144S was at the listed airspeed. In any event, when NASA subcontracted Tupolev bureau in the 1990s to convert one of the remaining Tu-144D to a Tu-144LL standard, the procedure set by Tupolev for landing defined the Tu-144LL "final approach speed... on the order of 360 km/hr depending on fuel weight." Brian Calvert, Concorde's technical flight manager and its first commercial pilot in command for several inaugural flights, cites final approach speed of a typical Concorde landing to be 287–296 km/h (178–184 mph; 155–160 kn). The lower landing speed compared to Tu-144 is due to Concorde's more refined design of the wing profile that provides higher lift at low speeds without degrading supersonic cruise (aeronautics) performance – a feature often mentioned in Western publications on Concorde and acknowledged by Tupolev designers as well.




Along with early Tu-134s, the Tu-144 was one of the last commercial aircraft with a braking parachute.



Although studies showed that turbojet engines are highly desirable for supersonic airliners, none were available. The Tu-144 prototype was therefore originally fitted with the inefficient Kuznetsov NK-144 turbofan engines and consequently suffered from higher nacelle aerodynamic drag. While this permitted early test flights, it did not permit cruising at Mach 2 without afterburner. A maximum cruising speed of 2,430 km/h (1,510 mph; 1,310 km) (Mach 2.29) was obtained with the afterburner. This meant that while Concorde could supercruise (maintain supersonic flight without using its afterburners), the Tu-144 could not. Later work on the Tu-144S resolved this shortcoming. The turbofan engines suffered from heavy fuel consumption, and hence a limited range (aeronautics) of about 2,500 km (1,600 mi; 1,300 mi.), far less range than the Rolls-Royce/Snecma Olympus 593 turbojet that powered Concorde.

The Tu-144S model, of which nine were produced, featured the Kuznetsov NK-144F turbofan engines that offered better fuel efficiency over the original engine. The four engines each had a maximum afterburning thrust of 200 kilonewtons (45,000 lbf) and each had separate inlet ducts in each nacelle and variable intake ramps in the inlets, giving a cruising speed of 2,000 km/h (1,200 mph; 1,100 kn) (Mach 1.88). This also gave it a longer range of 3,080 km (1,910 mi; 1,660 nmi), but still less than half the range of Concorde.

The final Tu-144D model of which six were produced was powered by the Kolesov RD-36-51 turbojet. This gave the Tu-144D the ability to cruise at a comparable speed to Concorde at 2,124 km/h (1,320 mph; 1,147 kn) (Mach 2.0). The new engines also gave the Tu144D a much longer range, 6,200 km (3,900 mi; 3,300 nmi) at half the full payload. Plans for an aircraft with a range in excess of 7,000 kilometres (4,300 mi; 3,800 nmi) range were never implemented.


Espionage against and influence of Concorde

The development of the Tu-144 is closely related to industrial espionage against the French company Aérospatiale, which was (along with the British Aircraft Corporation - BAC) developing Concorde. Sergei Pavlov, officially acting as Aeroflot's representative in Paris, was arrested in 1965 and was in possession of detailed plans of the braking system, landing gear and the airframe of Concorde. Another agent named Sergei Fabiew, arrested in 1977, was believed to have obtained the entire plans of Concorde prototype in the mid-1960s[citation needed]. However, these were just early development versions and would not have permitted the USSR engineers to come up with their own aircraft, but could have served as an indication of the work of Concorde design team. An espionage theory involved the Anglo/French Concorde team, who knew that the Soviets intended to steal the plans, and therefore put into circulation a set of dummy blueprints with deliberate design flaws.


Operational history


Operational service

The Tu-144S went into service on 26 December 1975, flying mail and freight between Moscow and Alma-Ata in preparation for passenger services, which commenced on 1 November 1977.

The passenger service ran a semi-scheduled service until the first Tu-144D experienced an in-flight failure during a pre-delivery test flight, crash-landing, on the 23 May 1978 with two crew fatalities. The Tu-144's 55th and last scheduled passenger flight occurred on 1 June 1978.

An Aeroflot freight-only service recommenced using the new production variant Tu-144D ("D" for Dal'nyaya – "long range") aircraft on 23 June 1979, including longer routes from Moscow to Khabarovsk made possible by the more efficient Kolesov RD-36-51 turbojet engines, which also increased the maximum cruising speed to Mach 2.15.

Including the 55 passenger flights, there were 102 scheduled flights before the cessation of commercial service.


Later use

The Tu-144 programme was cancelled by a Soviet government decree on 1 July 1983 that also provided for future use of the remaining Tu-144 aircraft as airborne laboratories. In 1985, Tu-144D were used to train pilots for the Soviet Buran space shuttle. In 1986–1988 Tu-144D No. 77114, built in 1981, was used for medical and biological research of high-altitude atmosphere radiological conditions. Further research was planned but not completed, due to lack of funding.


Use by NASA

In the early 1990s, a wealthy businesswoman, Judith DePaul, and her company IBP Aerospace negotiated an agreement with Tupolev, NASA, Rockwell and later Boeing. They offered a Tu-144 as a testbed for its High Speed Commercial Research program, intended to design a second-generation supersonic jetliner called the High Speed Civil Transport. In 1995, Tu-144D No. 77114 (with only 82.5 hours of flight time) was taken out of storage and after extensive modification at a cost of US$350 million, designated the Tu-144LL (where LL is a Russian abbreviation for Flying Laboratory, Russian: Letayuschaya Laboratoriya, Летающая Лаборатория). The aircraft made a total of 27 flights during 1996 and 1997. Though regarded as a technical success, the project was cancelled for lack of funding in 1999.

This aircraft was reportedly sold in June 2001 for $11M via an on-line auction, but the aircraft sale did not proceed. Tejavia Systems, the company handling the transaction, reported in September 2003 that the deal was not signed as the replacement Kuznetsov NK-321 engines from a Tupolev Tu-160 bomber were military hardware and the Russian government would not allow them to be exported.

In 2003, after the retirement of Concorde, there was renewed interest from several wealthy individuals who wanted to use the Tu-144LL for a transatlantic record attempt, despite the high cost of a flight readiness overhaul even if military authorities would authorize the use of NK-321 engines outside Russian Federation airspace.

The last two aircraft remain in Gromov Flight Research Institute in Zhukovsky, Nos. 77114 (the Tu-144LL) and 77115. In March 2006, it was reported that both aircraft would be preserved, with one erected to a pedestal near Zhukovsky City Council or above the Gromov Flight Research Institute entrance from Tupolev avenue.

A local Zhukovsky newspaper reported that Tupolev offered to restore a Tu-144 (possible No. 77116) to flying condition for the 2014 Winter Olympic Games in Sochi, to transport the Olympic flame and take part in an air show. Given the time in storage, the history of this aircraft and the claims that hull No. 77116 believed to have been dismantled for metal, this did not happen.

Additional Information

Show on Homepage Diecast
Diecast Toy Manufacturer Dragon Wings
Manufacturer No
Country Soviet Union
Scale 1:144
Type Jet Aircraft
Series No
Color Multi-Colored